
~teachers 
learning 
code 

-
0 

0 

··o 
•••••••• • • • • • • • • • • • • • • 
• • •••••• 

---



Table of Contents 
~'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'''"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"' ~ I AN INTRODUCTION TO TEACHERS LEARNING CODE 
~ ..__ ____________________________________ _, 

4 What is Teachers Learning Code? 

4 How Teachers Learning Code Was Developed 

5 Our Formula for Successful Programming 

6 The Teachers Learning Code Digital Toolbox 

~'"'""'"'"'"'""'"'"'"'"'""'"'"'"'""'"'"'"'""'"'"'"'"'""'"'"'"'""'"'"'"'""'"'"'"'"'""'"'"'"'""'"'"'"'""'"" 
II TEACHING CODE FOR BEGINNERS I 

8 Why Teach Coding? 

9 Diversity Matters 

10 Learning Objectives 

12 Taking a Deeper Look at Computational Thinking 

13 Glossary of Key Programming Concepts 

~'"'""'"'"'"'"'"'""'"'"'"'"'""'"'"'"'"'""'"'"'"'"'""'"'"'"'"'""'"'"'"'"'""'"'"'"'"'"'""'"'"'"'"'""'"'"'"'" 
II LESSON PLANNING I 

14 Minimum Requirements 

15 Preparation Timeline 

16 Setting the Tone 

17 Suggested Structure of A Lesson 

18 Pacing 

19 Contingency Planning 

EXTRAS 

22 Additional Resources 

21 Notes 



Welcome 
WE WANT TO INSPIRE CANADIANS Q 
through coding education 
to become empowered digital 
citizens who can understand, 
participate, and shape our country 
and the world as creators and 
innovators of technology. 
Whether you are a teacher in a classroom, a program coordinator at 

a community centre, a homeschooling parent or a Girl Guide troop 

leader - we've put together this guide to help you teach anyone in 

your community how to code . 

After running programs for several years, we have learned a thing or 

two about teaching people how to code. In our series of Teachers 

Learning Code guides, we share many of our tips and tricks for getting 

starting, resources to familiarize yourself with, and lots of easy-to

follow, and even easier to implement, coding lessons to empower the 

future generation of technologists across Canada. 

We encourage you to use as much or as little of our resources as you 

like, to remix the lessons we've created, or to create new ones and 

share them with our community. Our guides should serve as your 

jumping off point - where you choose to take your program is the fun 

part and is entirely up to you! 

Technology is creative - have fun! 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 3 



AN INTRODUCTION TO 

Teachers 
Learning 
Code 

What is Teachers Learning 
Code? 
Using technology to change the world through 

teamwork, creativity, and of course, code. 

Teachers Learning Code is a program designed by 

Canada Learning Code, a national charity focused on 

inspiring kids to be builders - not just consumers -

of technology through coding lessons and challenges. 

Teachers Learning Code is an approach to introducing 

coding that can be scaled back or expanded 

depending on the needs of your group of learners. 

Our programming can be facilitated by non-technical 

or technical educators and youth program managers 

within schools and community groups . 

Our series of 'how-to' guides and coding challenges 

are designed for K-12 learners . They were all created 

with the core elements and features that our programs 

are known and loved for. 

> teacherslearningcode.com 

4 I teacherslearningcode.ca 

How Teachers Learning 
Code was Developed 

At Canada Learning Code, we've 

taught thousands of youth across the 

country through our Girls Learning 

Code, Kids Learning Code, and 

Teens Learning Code workshops, 

camps, and after-school programs. 

Our content has been developed 

in partnership with educators and 

industry-leading experts and tested, 

time and time again, with youth 

between the ages of 3-17 inside and 

outside of the classroom. 

For Teachers Learning Code specifically, we took 

this methodology and curriculum development 

process one step further and engaged non

technical educators in the planning, development, 

and execution of the material. We hosted focus 

groups, sent out surveys, co-taught with teachers 

in schools and community centres, observed our 

materials being used in the classroom and iterated, 

iterated, and iterated again - all with the ultimate 

goal of developing a program that works for 

students and educators alike. 

~ teachers learning code 



OUR FORMULA FOR 

Successful 
Programming 

Our content has been designed specifically with 
girls in mind and with the goal of creating gender
balanced tech environments. 

Research has shown us that girls approach the computer as a "tool" useful primarily for what it can do; boys more 

often view the computer as a "toy" or an extension of the self. At Canada Learning Code, we don't only teach 

"how" to build, but also "why" it is important. We offer an opportunity for youth to learn about technology and 

collaborate together . 

Fun and engaging content 

We LOVE technology and want to pass it on. With the developers, designers, 

and professional educators, we've created content that not only showcases 

beginner-friendly concepts, but also highlights ideas to be excited about. 

The opportunity to learn and collaborate alongside like-minded students 

Through hands-on team-based exercises kids will feel part of a resourceful 

group who are all curious about technology, and will find learning about it 

both intriguing and rewarding . 

We're all about confidence and empowerment 

Teachers Learning Code lessons and challenges are all about instilling the 

growth mindset in learners . We're all about teaching youth how to learn 

from their mistakes and developing confidence and empowerment through 

learning and building . 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 5 

rixajoy
Sticky Note
Unmarked set by rixajoy

rixajoy
Cross-Out

rixajoy
Inserted Text
help from



THE TEACHERS LEARNING CODE 

Digital Toolbox 

l 
The Teachers Learning Code Digital Toolbox is a series of 

guides, lessons and resources that have been designed 

to give educators the general skills, knowledge, and 

confidence to introduce coding to their students. 

The guide you are reading right now is our Quick Start Guide and includes high-level information on 

how to bring coding to your classroom . This guide is designed to be used in conjunction with our 

tool-specific guides that cover the basics of our favourite coding tools, like Scratch, Mozilla Thimble, 

and Mozilla X-Ray Goggles. Our tool-specific guides also come with detailed lesson plans and 

coding activities ready-made for classroom delivery! 

~ '~'~'~'''~'~'~'''~'~'~'''~'~,~~'~'~'''~'~'~'''~'~'~'''~'~,~~,~,~,~~'~'~'''~'~'~'''~'~'~'''~'~,~~,~,~,~~'~'~'''~'~'~'''~'~'~'''~'~,~~'~'~'''~'~'~'''~'~'~'''~'~,~~,, i 
~ TIPS FOR TEACHING CODE Id HAVING FUN WHILE DOING IT 
~~-------------------------------------~ 

Ensure you are familiar Have a clear vision Have a growth mindset or 

with the tool, but don't or what you want to ' ail-forward' approach . 

worry about being an accomplish and find a S read the belief that 

'expert ' - allow your champion in your school to abilities are not dictated 

learners to teach one co-teach with you! It is all by talent alone, but can be 

another. about integrated learning . developed through hard 

work and perseverance . 

Bring outside experts Be creative, don't be 

in. Invite guest speakers their creativity be afraid to fail, and most 

and olunteers from the yo r guide . What do importantly, have fun! 

community to lead mini they want to explore 

lessons and be there as more? What do they 

extra coding support . want to learn? 

6 I teacherslearningcode.ca 



TEACHING CODE FOR 

Beginners 

What is Code? 

The simplest explanation for code is that it represents a 
set of instructions that are given to a computer in order 
to execute a certain task. Together, these instructions 
create an algorithm. 

Computers take direction extremely literally, which means that any instructions in your code/ 

algorithm should be precise and specific. For example, when reading a PB&J recipe (an algorithm in 

itself!), a human would likely understand that "Put the jam on the bread" is direction to spread some 

amount of jam on a slice of bread. A robot, however, might interpret this entirely differently. Should 

the robot put the jar of jam on top of the bread bag? This might seem silly to you, but you will soon 

see how literally a computer will take direction . 

A clearer set of instructions for a computer might be: 

1. Turn the lid on the jam counterclockwise until it is completely loosened . 

2. Lift the lid off the jar of jam. 

3. Place the lid beside the jar of jam . 

... and so on. 

Code is extremely versatile - we can use it to control robots, build webpages, create video games, 

analyze large datasets, and more! The possibilities are endless. While we use different coding 

languages to complete different tasks (ie. HTML & CSS for web-building, R for data analysis, 

Javascript for flying robots!), each of these languages is really just a different way of communicating 

your instructions or algorithm to the computer . * 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 7 



Why Teach Coding 

Technology is everywhere and it's not going away. 

Science, technology, engineering and math (STEM), 
especially when integrated with other disciplines, are 
the skills of the future. We want to equip Canadian youth 
with the critical skills they need to navigate the world 
we live in today and thrive in the future. 

But why teach coding? 
According to the Information and Communications Technology Council of Canada, there will be an 

estimated shortage of more than 200,000 ICT workers in Canada by 2020 . Learning to code can lead 

to rewarding and lucrative careers for our youth. That said, teaching kids to code is about more than 

just helping children understand the technology they are using and secure employment in the future. 

At a fundamental level, it improves problem-solving and critical thinking skills. 

We think it's important 
for youth to learn to code 
for a few reasons: 

Coding is a superpower. Learning to code let's 

kids build - not just consume - the technology 

around around them, from video games to websites, 

robots, and more! 

Coding helps kids develop new ways of 

thinking. Learning to code helps kids develop other 

crucial and transferable skills - like computational 

thinking - allowing them to tackle problems outside 

the realm of coding in new and innovative ways . 

8 I teacherslearningcode.ca 

Coding helps kids understand the world 
around them better. If we teach biology and 

mathematics in order to understand the world 

around them, then knowing the basics of how 

computers communicate and how to engage 

with them should be a given . 

Coding can help change the world. Learning 

to code empowers kids to use technology as 

a creative tool to build solutions to challenges 

people face everyday. 

Coding is fun! We want kids to experience the 

satisfaction and thrill of building something of 

their very own . 



Diversity 
Matters 
It's a fact that the technology industry has 

a diversity problem . We've developed our 

program and lessons with diversity in mind. 

Engaging and supporting a diverse group of 

learners in technology is critical if we want to 

close the diversity gap. 

~'""'"'""'"'""'"'""'"'""'"'""'"'""'"'''"'"'""'"'""'"'""'"'""'"'""'"" II TIPS FOR ENGAGING EVERYONE I 
Connect coding and technology to meaningful 
and creative projects. 

Choose and/or adjust challenges so that they 

resonate with your learners' interests and the 

interests of their communities . Do they like music? 

Art? Animals? Food? Philanthropy? Is there an issue 

in their community that they have a tech-based 

solution for? 

Connect coding and technology to meaningful 
and creative career paths. 

There isn't just one technology job - there are 

thousands of jobs! Developers work on movies, 

games, medical devices, and more . Sharing these 

diverse and creative roles with learners can help 

broaden their understanding of the industry . 

Maintain a social and collaborative learning 
environment. 

Encourage group work, peer-to-peer mentoring, 

and recognition and demonstration of work and 

accomplishments . Facilitate ice-breaker activities and 

games to develop bonding among the participants, 

especially if they are not familiar with one another. 

Recruit mentors who reflect the community. 

When recruiting volunteers or inviting guests 

to be industry speakers, it is ideal to have 

them reflect the community. Learners will more 

likely connect with those who they can relate 

to. Diversity in mentors is important, and also 

highlights those who may be underrepresented 

in the industry . 

Focus on why, not just how. 

Loop lessons back to why coding matters - not 

just how to code. Find ways to link learning 

to your learners' diverse realities beyond the 

classroom . Girls, in particular, really resonate 

with how what they are working on can have an 

impact on and change the world . 

Be aware of unconscious bias. 

Keeping biases in check is important . We often 

unintentionally guide boys toward 'boy ' things 

and girls toward 'girl' things. There are subtle 

biases in society that affect students like 'girls 

aren't good at math .' Keep in mind that you may 

have learners that hold these misconceptions . 

Take the time to debunk them if you identify 

them . 

Be aware of imposter syndrome. 

Imposter syndrome is strong for groups 

underrepresented in technology, and is often 

associated with high-achieving learners. 

Youth experiencing imposter syndrome might 

demonstrate feeling that they aren't "smart 

enough, good enough, or doing enough to 

succeed ". Be aware of this with the youth you 

are working with, and if you identify it, make an 

effort to provide extra support, and reinforce 

these learners ' skills and aptitudes, especially for 

subjects like math, science, and technology. * 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 9 

rixajoy
Cross-Out

rixajoy
Inserted Text
programs



Learning Objectives 
Coding is really about learning to solve problems, rather 

than learning a specific language or tool like Java or Scratch. 

Programming languages evolve and change all of the time, 

but the fundamentals of how you approach problem solving 

with computers doesn't change. 

Computational thinking, or process for solving problems, can be taught even without learning a 

specific programming language. The code is just the tool that facilitates solving a challenge in a 

particular way. This is important to remember as educators! You don't need to know all the syntax 

of a language to teach it; you just need to understand the logic of solving problems. This logic has 

likely already been developed during your journey as an educator. Now, it's time to apply that logic 

to teaching code. 

By teaching code, we are teaching: 

Computational Thinking 

• Logical reasoning 

• Critical thinking 

• Pattern recognition 

• Solving complex problems by breaking them 
down into simpler parts 

• Debugging problems 

• Developing ideas from initial concepts to a 

final project 

Concept About Computers 

• Computer programs are created by humans 
and they tell the computer exactly what to do 

• Computers aren't that bright or intuitive -
they don't understand things the way humans 
do. You need to be exact and precise with 
your instructions to computers and instruct 
them step-by-step 

• You don't have to be an expert to write code 

- you just need clear and careful thinking 

10 I teacherslearningcode.ca 

Digital Citizenship 

• Establishing a positive attitude towards 
building, not just consuming, technology 

• Empowering kids to 'look under the 
hood' and ask questions about the 
technology they consume 

Creativity and Collaboration 

• Design Thinking 

• Innovation 



Programming Concepts 

There are hundreds of computer programming languages out there and although 

they may look nothing alike to the human eye, at their core, they are all the same. 

There are fundamental concepts and ways to interact with a computer. We'll 

be using Scratch, Mozilla Thimble, and other tools to help us teach kids these 

concepts in a fun, relevant way. 

• Variables • Functions 

• Data • Parallel execution 

• Events • Boolean logic 

• Sequencing • Random numbers 

• Iteration and loops • Debugging 

• Conditional statements • Integrated math topics 

~ """'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'" II CANADIAN HISTORY AND CULTURE I 

We've built lessons that will 

touch on various aspects of our 

history. Participants will learn 

about important historical events, 

and stories and experience them 

in a whole new way. We've built 

these lessons as complements to 

existing school curriculum, enabling 

educators to meet traditional 

learning objectives code. * 
Digitial Toolbox: How-to Introduce Coding to Your Classroom I 11 

rixajoy
Inserted Text
through

rixajoy
Cross-Out

rixajoy
Inserted Text
compliments




TAKING A DEEPER LOOK AT 

Computational 
Thinking 
Computational thinking involves identifying a problem and articulating 

the solutions in a way that a computer (or another human) could act 

on. It involves breaking big problems into smaller parts, and describing 

specific steps to overcome these smaller challenges. Computational 

thinking concepts aren't unique to coding - you'll notice they are the 

principles many people use in their day-to-day lives to solve problems 

of all sorts. 

Computational thinking involves 
the following key steps: 

✓ Logical Reasoning 

Computers aren't intuitive - they are predictable. Logical reasoning 

allows kids to work out what a computer will do. For example, if they 

hit the red 'X' button on their browser, they will close the current 

window. This process comes very quickly to kids as they develop a 

mental model for what technology does early on. 

✓ Algorithms 

Algorithms are a set of instructions that direct a computer to 

complete some task. Algorithms are common in our everyday 

lives - a lesson plan is an algorithm for a class, while a recipe is an 

algorithm for making our favourite dish. Writing out step-by-step 

instructions in plain English is what we call 'pseudo code' . 

✓ Decomposition 

Code is complex and problems are complex. An important part of 

computational thinking and coding is breaking down problems into 

smaller, more manageable, steps like we might break down a book 

report into different sections. 

12 I teacherslearningcode.ca 

✓ Abstraction 

After we break problems into smaller 

parts, abstraction helps us decide 

what's important and what's not. 

It helps manage complexity, like 

when we decide what information is 

needed to help solve a math equation 

or word problem. 

✓ Patterns and generalizations 

Patterning is an important part 

of learning to code. It helps us 

make predictions, create rules and 

solve more general problems. For 

example, a formula in math is a 

generalization that helps us solve 

many different problems. 



GLOSSARY OF KEY 

Programming 
Concepts 

Here are some key programming 
concepts to help you understand 
programming better. You'll notice 
many of these concepts come up in 
other subjects and daily life, and aren't 
as daunting as you might think! 

~ a step-by-step set of operations to 
be performed to help solve a problem 

~ a special variable that can store more 
than one value at a time; items are ordered 

by a number so that we can access them later 

(ie. an array called 'dogs' might have items: 

chihuahua, pug, and retriever) 

~ : 'and', 'or', 'not' are examples of 

boolean operators; the values you are working 

with must be either true or false (ie. if I am 

warm AND dry, then I am comfortable) 

~ making decisions based on 
conditions (ie. if it is raining, then open your 

umbrella) 

~ finding problems in code and 
solving them 

~ one thing causing another thing to 
happen (ie. 'when green flag is clicked' block 

in Scratch) 

~ a type of procedure or routine that 

performs a distinct operation; there are often 

canned functions that exist already like the 'If 

on edge, bounce' block in Scratch 

~ running the same sequence multiple 
times 

(ie. 'repeat' or 'forever' blocks in Scratch) 

~ exploring connections between 
the whole and the parts 

~ mathematical and logical 
expressions (ie. 'X + X' block in Scratch) 

~ making things happen at the 
same time 

~ taking an existing project or idea 

and making it new by changing or adding to it 

~ identifying a series of steps 

necessary to complete a task; computers read 

and perform commands in order from top to 

bottom 

~ 'state' in a programming sense is just 
the same as 'state' in a non-programming 

sense (ie. the TV is on or off). Variables have 

states, values don't. For example, 42 is 42 and 

there's nothing you can change about it. 

~ the spelling or grammar of a 
programming language; the blockly structure 

in languages like Scratch removes the need 
for syntax 

~ stores a piece of information that 

changes over time (ie. the score variable in 

a game may record the number of points a 

player has at any given time) 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 13 



Fun!



Preparation 
Timeline 

WHEN TASK 

1 Week To Go Go to teacherslearningcode.com and: 

1. Read the Lesson Plan (Description to Extensions sections) 

2. View the Example Project 

3. Use the Solution Sheet to practice going through the activity 

4. Review any videos and additional background information provided 

to prepare for the topic or theme of the lesson (if applicable) 

3 Days To Go Create any necessary online accounts (if applicable) 

1 Day To Go Print a copy of the Lesson Plan and Solution Sheet to have on hand in case 

the WiFi goes down 

Ensure you have all necessary hardware and supplies 

Day-of Set up hardware needed for the session 

Write any login information on chart paper/whiteboard/chalkboard, so 

it is easily read by all students 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 15 



Setting the Tone 
Before diving into a lesson, it's important to set the tone for learners 

by going over a few key concepts and values to guide their learning. 

We like to encourage and instill a growth mindset or 'fail-forward' 

approach in learners. Acknowledging upfront that technology fails 

and that's part of the learning process is critical in setting this tone. 

Encourage exploration, trial and error and collaborative problem solving. 

And among all else? Patience. Learning to code is like learning a new 

language and that takes time, patience, and lots of practice. 

Here are some common 
things we like to address in 
all of our programs: 

1. Technology Fails 

If a computer isn't working the way it should and a learner 

is feeling frustrated, acknowledge that this is common . 

Try to troubleshoot the problem together . Ask what they 

would do if this happened at home . Would they quit and 

reopen the program? Restart the computer? Check if the 

computer is plugged in? If the problem does not resolve 

itself, try using Google as a resource! It is important to 

show the learner how to be resourceful for the future . 

2. Learner-Driven Problem Solving 

Encourage your students to ask others for help first 

before coming to you by using the 'Ask three, then me' 

protocol. Often other learners can troubleshoot many 

tech challenges and it's a great opportunity to empower 

them as leaders. You can also consider creating a 

troubleshooting checklist with your students. And when 

all else fails? Google is your friend! Resourcefulness 

and learning to access information on the Internet is 

an extremely valuable skill for everyone to learn and is 

strongly encouraged. 

16 I teacherslearningcode .ca 

3. Inquiry-Based Learning 

We've developed many challenges to 

introduce fundamental programming 

concepts to youth, but we stress that these 

are just starting points. Allowing students 

to run with their ideas and questions is an 

important part of the learning experience . 



SUGGESTED STRUCTURE 

Of A Lesson 

Each lesson will follow the same format: 

• Introduction • Code-Along • Activity 

The Introduction sets the stage for the lesson by providing some 

background on the theme in focus. This is where you should share 

our 'Setting the Tone' tips . 

Next up, during the Code-Along, you will introduce the tool being 

used (e.g. Scratch or Thimble). Give learners a chance to play 

around with and test out the tool, with a bit of structure created 

through the 'challenges' provided. It is here that you will set 

the expectation of using problem-solving and resourcefulness 

to figure out how to make things happen with code . Do this 

through asking (rather than telling) learners where to find things, 

verbalizing your thought process from A-to-8, and constantly 

redirecting questions towards other learners, or towards the 

reference. 

The third part of the lesson, which consumes the most time is the 

Activity. While the beginning may look similar to the Code-Along 

portion as learners get acquainted with the provided activity, the 

majority of the time will be spent brainstorming remix ideas to 

personalize their project. While learners remix, be sure to check

in often and have volunteers come up to the front of the class to 

share cool findings and solutions with the group. 

Finally, the end of the Activity portion should include 

demonstrations, where possible! We recommend having learners 

come up one at a time to present their projects. However, if 

you're short on time, you can also have a Gallery Walk, where 

participants open their laptops, tuck in their chairs, and walk 

around the room to explore each other's final projects. 

Feel free to include breaks whenever a group needs a stretch 

break or a change of pace. * 

If; 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 17 



Pacing 

One of the most 

important skills 

needed for teaching 

with technology is 

flexibility. Things 

happen, tech fails, 

and your learners 

will all come from a 

variety of skill levels 

and backgrounds. 

18 I teacherslearningcode.ca 

A large part of delivering a successful coding lesson is your ability to 

read the group. Your goal is to teach at the level of the majority of your 

learners - and to try to keep everyone engaged, whether that means 

offering extra challenges to learners that are ahead, or modifying 

activities for those who are falling behind. 

Each lesson presented will have a Solution Sheet with the steps 

required to create a basic working project . They also include a number 

of add-ons or challenges for learners that are ahead of the group. You 

can support advanced learners by giving them challenges from this 

list, or providing them with a copy of the solution sheet to work from. 

Please also used the 'Extensions' section of the Lesson Plan to support 

learners who are moving ahead. 

In order to avoid leaving learners behind, try not to assume anything. 

Check in with the group and ask questions like: "What is .. (e.g. a 

browser)?" or "What does .. (e.g. interactive) mean?" Also, ask learners 

for reminders on things like keyboard shortcuts, and repeat information 

as much as needed in order to help it really stick. 

Assess the group by looking at facial expressions or asking learners 

to give a thumbs up or a thumbs down for feedback on how they are 

doing. Try to ask the right kinds of questions. Instead of asking "Does 

everyone understand? Are we good to move on?" say "If you need one 

more minute, raise your hand," or "If your screen does not look like 

mine, raise your hand." The more specific, the better . 

Ideally, each lesson will end with learners having completed a 

personalized project, and having had the opportunity to present to 

the group. However, if this isn't possible, for whatever reason, and you 

aren't able to get through everything ... that's okay! Ultimately, we want 

learners to have a positive experience with technology, and have fun! 

rixajoy
Cross-Out

rixajoy
Inserted Text
use



CONTINGENCY 

Planning 

The reality is that technology fails - the internet goes down, 

computers crash, work is lost - and this often feels like 

failure, which is not a feeling any teacher or student likes. 

Below we've prepared some helpful tips for you to mitigate 

and be prepared for technology issues: 

~'""'"'""'"'""'"'"'""'"'""'"'""'"'""'"'"'""'"'""'"'""'"'""'"'""'"'"'""'"'"' 
II PLAN AHEAD I 

The more you can plan ahead for potential tech 
hiccups, the more confident you will be when 
class starts. 

Try these suggestions: 

D Set up computers ahead of time 

D Write logins and passwords on the board 

D Use one universal login versus one per student 

D Charge laptops before class 

D Encourage students to partner and work together 

PAPER-BASED OR 

UNPLUGGED ACTIVITIES 

You don't need the internet or 

even a computer to teach coding 

or computational thinking! 

There are a lot of ways to teach 

fundamental programming 

concepts using unplugged 

activities. See 'Teachers Learning 

Code Digital Toolbox: Unplugged 

Activities' for more details. 

Digitial Toolbox: How-to Introduce Coding to Your Classroom I 19 



DATE: 





DATE: 



DATE: 






