canadalearningcode.ca

THE INCLUSIVE
TECHNOLOGY CLASSROOM 7

Ensure you are familiar with the tool you are
teaching but don’t worry about not being the
‘expert” — allow your students to teach one
another!

Have a growth mindset and use tech failures
as an opportunity for learning. It's a great
example of ‘debugging!’

It’s all about collaboration! Employ subject
integration, group work, and peer-to-peer
mentoring.

Bring outside experts in. Invite guest
speakers, co-teachers and volunteers from
the community to lead mini lessons and be
there as extra coding support.

Maintain a diverse mentorship presence (e.g.
recruiting volunteers or inviting women in the
industry as guest speakers and mentors).

Encourage your learners to ask others for
help first, before coming to you. (use the ‘ask
3 before me’ protocol)

Looping back lessons to why coding matters
— not just how to code. Connect coding and
technology to meaningful career paths (not
just programming) and learner interests.

Keeping biases in check is important. We
often unintentionally guide boys towards
‘boy’ things and girls toward ‘girl’ things.
Let the students and their creativity be your
guide — what do each of them want to
explore and learn?

Be aware of imposter syndrome and celebrate
accomplishments!

Consider creating a troubleshooting checklist
with your learners.

Be creative, don’t be afraid to fail and most
importantly, have fun!

teachers learning code

Funded by: Canadi



canadalearningcode.ca

CODING VOCABULARY

Algorithm: a step-by-step set of operations to be
performed to help solve a problem

Array: a special variable that can store more than
one value at a time; items are ordered by a number
so that we can access them later

Boolean Logic: ‘and’, ‘or’, ‘not” are examples of
boolean operators; the values you are working with
must be either true or false

Conditionals: making decisions based on conditions
(ie. if it is raining, then open your umbrella)

Debugging: finding problems in code and solving
them

Events: one thing causing another thing to happen
(ie. ‘when green flag is clicked’ block in Scratch)

Function: a named section of a program that
performs a specific task; there are often canned
functions that exist already like the 'If on edge,
bounce’ block in Scratch; these are sets of
instructions that can be used over again

Loops: running the same sequence multiple times
(ie. ‘repeat’ or ‘forever’ blocks in Scratch)

Modularizing: exploring connections between the
whole and the parts; breaking down a project into
smaller chunks of code

Operators: mathematical and logical expressions (ie.
X + X’ block in Scratch)

Parallelism: making things happen at the same time

Remixing: taking an existing project or idea and
making it new by changing or adding to it

Sequence: identifying a series of steps necessary
to complete a task; computers read and perform
commands in order from top to bottom

Syntax: the spelling or grammar of a programming
language; the blockly structure in languages like
Scratch removes the need for syntax

Variable: stores a piece of information that changes
over time (e.g. score)

teachers learning code



